Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38446651

RESUMEN

Closed-loop deep brain stimulation (DBS) shows great potential for precise neuromodulation of various neurological disorders, particularly Parkinson's disease (PD). However, substantial challenges remain in clinical translation due to the complex programming procedure of closed-loop DBS parameters. In this study, we proposed an online optimized amplitude adaptive strategy based on the particle swarm optimization (PSO) and proportional-integral-differential (PID) controller for modulation of the beta oscillation in a PD mean field model over long-term dynamic conditions. The strategy aimed to calculate the stimulation amplitude adapting to the fluctuations caused by circadian rhythm, medication rhythm, and stochasticity in the basal ganglia-thalamus-cortical circuit. The PID gains were optimized online using PSO, based on modulation accuracy, mean stimulation amplitude, and stimulation variation. The results showed that the proposed strategy optimized the stimulation amplitude and achieved beta power modulation under the influence of circadian rhythm, medication rhythm, and stochasticity of beta oscillations. This work offers a novel approach for precise neuromodulation with the potential for clinical translation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Neuronas/fisiología , Ganglios Basales/fisiología , Enfermedad de Parkinson/terapia , Tálamo/fisiología
2.
Proc Natl Acad Sci U S A ; 121(11): e2316365121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38451949

RESUMEN

Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Humanos , Tálamo/fisiología , Neuronas/fisiología , Microelectrodos
3.
J Neural Eng ; 21(1)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38335553

RESUMEN

Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively modulate confined regions deep inside the human brain, which could provide a new tool for causal interrogation of circuit function in humans. However, it has been unclear whether the approach is potent enough to modulate behavior.Approach: To test this, we applied low-intensity ultrasound to a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity ultrasound, repeated less than 30 times over a period of 90 min, nearly abolished tremor (98% and 97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished following the stimulation, suggesting that the stimulation was safe with no harmful long-term consequences detected.Significance: This result demonstrates that low-intensity focused ultrasound can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/terapia , Temblor/terapia , Tálamo/diagnóstico por imagen , Encéfalo , Resultado del Tratamiento
4.
Acta Neurochir (Wien) ; 166(1): 106, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403814

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor, rigidity, and akinesia. According to the literature, the dentato-rubro-thalamic tract (DRTt) is verified target for DBS in essential tremor; however, its role in the treatment of Parkinson's disease is only vaguely described. The aim of our study was to identify the relationship between symptom alleviation in PD patients and the distance of the DBS electrode electric field (EF) to the DRTt. METHODS: A single-center retrospective analysis of patients (N = 30) with idiopathic Parkinson's disease (PD) who underwent DBS between November 2018 and January 2020 was performed. DRTt and STN were visualized using diffusion-weighted imaging (DWI) and tractography protocol of magnetic resonance (MR). The EF was calculated and compared with STN and course of DRTt. Evaluation of patients before and after surgery was performed with use of UPDRS-III scale. The association between distance from EF to DRTt and clinical outcomes was examined. To confirm the anatomical variation between DRTt and STN observed in tractography, white matter dissection was performed with the Klingler technique on ten human brains. RESULTS: Patients with EF overlapping STN and DRTt benefited from significant motor symptoms improvement. Anatomical findings confirmed the presence of population differences in variability of the DRTt course and were consistent with the DRTt visualized by MR. CONCLUSIONS: DRTt proximity to STN, the main target in PD DBS surgery, confirmed by DWI with tractography protocol of MR combined with proper predefined stimulation parameters may improve efficacy of DBS-STN.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/cirugía , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Resultado del Tratamiento
5.
Neuroimage Clin ; 41: 103576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38367597

RESUMEN

BACKGROUND: Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS: We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS: A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION: Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Estimulación Encefálica Profunda/métodos , Estudios Transversales , Estudios Retrospectivos , Imagen de Difusión Tensora/métodos , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Resultado del Tratamiento , Ataxia
6.
Neuroimage Clin ; 41: 103587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422832

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) studies have shown that stimulation of the motor segment of the thalamus based on probabilistic tractography is predictive of improvement in essential tremor (ET). However, probabilistic methods are computationally demanding, requiring the need for alternative tractography methods for use in the clinical setting. The purpose of this study was to compare probabilistic vs deterministic tractography methods for connectivity-based targeting in patients with ET. METHODS: Probabilistic and deterministic tractography methods were retrospectively applied to diffusion-weighted data sets in 36 patients with refractory ET. The thalamus and precentral gyrus were selected as regions of interest and fiber tracking was performed between these regions to produce connectivity-based thalamic segmentations, per prior methods. The resultant deterministic target maps were compared with those of thresholded probabilistic maps. The center of gravity (CG) of each connectivity map was determined and the differences in spatial distribution between the tractography methods were characterized. Furthermore, the intersection between the connectivity maps and CGs with the therapeutic volume of tissue activated (VTA) was calculated. A mixed linear model was then used to assess clinical improvement in tremor with volume of overlap. RESULTS: Both tractography methods delineated the region of the thalamus with connectivity to the precentral gyrus to be within the posterolateral aspect of the thalamus. The average CG of deterministic maps was more medial-posterior in both the left (3.7 ± 1.3 mm3) and the right (3.5 ± 2.2 mm3) hemispheres when compared to 30 %-thresholded probabilistic maps. Mixed linear model showed that the volume of overlap between CGs of deterministic and probabilistic targeting maps and therapeutic VTAs were significant predictors of clinical improvement. CONCLUSIONS: Deterministic tractography can reconstruct DBS thalamic target maps in approximately 5 min comparable to those produced by probabilistic methods that require > 12 h to generate. Despite differences in CG between the methods, both deterministic-based and probabilistic targeting were predictive of clinical improvement in ET.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Temblor
7.
Sci Rep ; 14(1): 2950, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316863

RESUMEN

After severe brain injury, zolpidem is known to cause spectacular, often short-lived, restorations of brain functions in a small subgroup of patients. Previously, we showed that these zolpidem-induced neurological recoveries can be paralleled by significant changes in functional connectivity throughout the brain. Deep brain stimulation (DBS) is a neurosurgical intervention known to modulate functional connectivity in a wide variety of neurological disorders. In this study, we used DBS to restore arousal and motivation in a zolpidem-responsive patient with severe brain injury and a concomitant disorder of diminished motivation, more than 10 years after surviving hypoxic ischemia. We found that DBS of the central thalamus, targeted at the centromedian-parafascicular complex, immediately restored arousal and was able to transition the patient from a state of deep sleep to full wakefulness. Moreover, DBS was associated with temporary restoration of communication and ability to walk and eat in an otherwise wheelchair-bound and mute patient. With the use of magnetoencephalography (MEG), we revealed that DBS was generally associated with a marked decrease in aberrantly high levels of functional connectivity throughout the brain, mimicking the effects of zolpidem. These results imply that 'pathological hyperconnectivity' after severe brain injury can be associated with reduced arousal and behavioral performance and that DBS is able to modulate connectivity towards a 'healthier baseline' with lower synchronization, and, can restore functional brain networks long after severe brain injury. The presence of hyperconnectivity after brain injury may be a possible future marker for a patient's responsiveness for restorative interventions, such as DBS, and suggests that lower degrees of overall brain synchronization may be conducive to cognition and behavioral responsiveness.


Asunto(s)
Mutismo Acinético , Lesiones Encefálicas , Estimulación Encefálica Profunda , Humanos , Estimulación Encefálica Profunda/métodos , Zolpidem , Motivación , Tálamo/fisiología , Nivel de Alerta/fisiología
8.
J Neural Eng ; 21(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38211344

RESUMEN

Deep brain stimulation (DBS) using Medtronic's Percept™ PC implantable pulse generator is FDA-approved for treating Parkinson's disease (PD), essential tremor, dystonia, obsessive compulsive disorder, and epilepsy. Percept™ PC enables simultaneous recording of neural signals from the same lead used for stimulation. Many Percept™ PC sensing features were built with PD patients in mind, but these features are potentially useful to refine therapies for many different disease processes. When starting our ongoing epilepsy research study, we found it difficult to find detailed descriptions about these features and have compiled information from multiple sources to understand it as a tool, particularly for use in patients other than those with PD. Here we provide a tutorial for scientists and physicians interested in using Percept™ PC's features and provide examples of how neural time series data is often represented and saved. We address characteristics of the recorded signals and discuss Percept™ PC hardware and software capabilities in data pre-processing, signal filtering, and DBS lead performance. We explain the power spectrum of the data and how it is shaped by the filter response of Percept™ PC as well as the aliasing of the stimulation due to digitally sampling the data. We present Percept™ PC's ability to extract biomarkers that may be used to optimize stimulation therapy. We show how differences in lead type affects noise characteristics of the implanted leads from seven epilepsy patients enrolled in our clinical trial. Percept™ PC has sufficient signal-to-noise ratio, sampling capabilities, and stimulus artifact rejection for neural activity recording. Limitations in sampling rate, potential artifacts during stimulation, and shortening of battery life when monitoring neural activity at home were observed. Despite these limitations, Percept™ PC demonstrates potential as a useful tool for recording neural activity in order to optimize stimulation therapies to personalize treatment.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia , Temblor Esencial , Enfermedad de Parkinson , Humanos , Tálamo , Epilepsia/diagnóstico , Epilepsia/terapia , Enfermedad de Parkinson/terapia , Temblor Esencial/diagnóstico , Temblor Esencial/terapia
9.
Expert Rev Neurother ; 24(2): 145-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38247445

RESUMEN

INTRODUCTION: Obsessive compulsive disorder (OCD) represents a complex and often difficult to treat disorder. Pharmacological and psychotherapeutic interventions are often associated with sub-optimal outcomes, and 40-60% of patients are resistant to first line therapies and thus left with few treatment options. OCD is underpinned by aberrant neurocircuitry within cortical, striatal, and thalamic brain networks. Considering the neurocircuitry impairments that underlie OCD symptomology, neurostimulation therapies provide an opportunity to modulate psychopathology in a personalized manner. Also, by probing pathological neural networks, enhanced understanding of disease states can be obtained. AREAS COVERED: This perspective discusses the clinical efficacy of TMS and DBS therapies, treatment access options, and considerations and challenges in managing patients. Recent scientific progress is discussed, with a focus on neurocircuitry and biopsychosocial aspects. Translational recommendations and suggestions for future research are provided. EXPERT OPINION: There is robust evidence to support TMS and DBS as an efficacious therapy for treatment resistant OCD patients supported by an excellent safety profile and favorable health economic data. Despite a great need for alternative therapies for chronic and severe OCD patients, resistance toward neurostimulation therapies from regulatory bodies and the psychiatric community remains. The authors contend for greater access to TMS and DBS for treatment resistant OCD patients at specialized sites with appropriate clinical resources, particularly considering adjunct and follow-up care. Also, connectome targeting has shown robust predictive ability of symptom improvements and holds potential in advancing personalized neurostimulation therapies.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Magnética Transcraneal , Estimulación Encefálica Profunda/efectos adversos , Encéfalo/fisiología , Trastorno Obsesivo Compulsivo/terapia , Resultado del Tratamiento
10.
Brain Struct Funct ; 229(2): 349-358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38172466

RESUMEN

Deep Brain Stimulation (DBS) is an experimental treatment for medication-refractory neuropathic pain. The ventral posteromedial (VPM) and ventral posterolateral (VPL) nuclei of the thalamus are popular targets for the treatment of facial and limb pain, respectively. While intraoperative testing is used to adjust targeting of patient-specific pain locations, a better understanding of thalamic somatotopy may improve targeting of specific body regions including the individual trigeminal territories, face, arm, and leg. To elucidate the somatotopic organization of the ventral nuclear group of the dorsal thalamus using in vivo macrostimulation data from patients undergoing DBS for refractory neuropathic pain. In vivo macrostimulation data was retrospectively collected for 14 patients who underwent DBS implantation for neuropathic pain syndromes at our institution. 56 contacts from 14 electrodes reconstructed with LeadDBS were assigned to macrostimulation-related body regions: tongue, face, arm, or leg. 33 contacts from 9 electrodes were similarly assigned to one of three trigeminal territories: V1, V2, or V3. MNI coordinates in the x, y, and z axes were compared by using MANOVA. Across the horizontal plane of the ventral nuclear group of the dorsal thalamus, the tongue was represented significantly medially, followed by the face, arm, and leg most laterally (p < 0.001). The trigeminal territories displayed significant mediolateral distribution, proceeding from V1 and V2 most medial to V3 most lateral (p < 0.001). Along the y-axis, V2 was also significantly anterior to V3 (p = 0.014). While our results showed that the ventral nuclear group of the dorsal thalamus displayed mediolateral somatotopy of the tongue, face, arm, and leg mirroring the cortical homunculus, the mediolateral distribution of trigeminal territories did not mirror the established cortical homunculus. This finding suggests that the facial homunculus may be inverted in the ventral nuclear group of the dorsal thalamus.


Asunto(s)
Estimulación Encefálica Profunda , Neuralgia , Humanos , Núcleos Talámicos Ventrales , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo/fisiología , Neuralgia/terapia
11.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237402

RESUMEN

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/terapia , Vías Nerviosas , Tálamo , Potenciales Evocados
12.
Brain ; 147(3): 1100-1111, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048613

RESUMEN

Neurological and neurodevelopmental conditions are a major public health concern for which new therapies are urgently needed. The development of effective therapies relies on the precise mapping of the neural substrates causally involved in behaviour generation. Direct electrical stimulation (DES) performed during cognitive and neurological monitoring in awake surgery is currently considered the gold standard for the causal mapping of brain functions. However, DES is limited by the focal nature of the stimulation sites, hampering a real holistic exploration of human brain functions at the network level. We used 4137 DES points derived from 612 glioma patients in combination with human connectome data-resting-state functional MRI, n = 1000 and diffusion weighted imaging, n = 284-to provide a multimodal description of the causal macroscale functional networks subtending 12 distinct behavioural domains. To probe the validity of our procedure, we (i) compared the network topographies of healthy and clinical populations; (ii) tested the predictive capacity of DES-derived networks; (iii) quantified the coupling between structural and functional connectivity; and (iv) built a multivariate model able to quantify single subject deviations from a normative population. Lastly, we probed the translational potential of DES-derived functional networks by testing their specificity and sensitivity in identifying critical neuromodulation targets and neural substrates associated with postoperative language deficits. The combination of DES and human connectome data resulted in an average 29.4-fold increase in whole brain coverage compared to DES alone. DES-derived functional networks are predictive of future stimulation points (97.8% accuracy) and strongly supported by the anatomical connectivity of subcortical stimulations. We did not observe any significant topographical differences between the patients and the healthy population at both group and single subject level. Showcasing concrete clinical applications, we found that DES-derived functional networks overlap with effective neuromodulation targets across several functional domains, show a high degree of specificity when tested with the intracranial stimulation points of a different stimulation technique and can be used effectively to characterize postoperative behavioural deficits. The integration of DES with the human connectome fundamentally advances the quality of the functional mapping provided by DES or functional imaging alone. DES-derived functional networks can reliably predict future stimulation points, have a strong correspondence with the underlying white matter and can be used for patient specific functional mapping. Possible applications range from psychiatry and neurology to neuropsychology, neurosurgery and neurorehabilitation.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Estimulación Encefálica Profunda , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Vigilia , Encéfalo/diagnóstico por imagen
13.
Sci Rep ; 13(1): 22332, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102180

RESUMEN

A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/terapia , Temblor/terapia , Tálamo/cirugía , Movimiento/fisiología , Resultado del Tratamiento
14.
Clin Neurol Neurosurg ; 235: 108041, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979562

RESUMEN

Emerging neuromodulatory treatments, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), have shown promise in reducing drug-resistant seizures. While centromedian thalamic nucleus and anterior thalamic nucleus stimulation have been effective in certain types of seizures, limited research has explored pulvinar nucleus stimulation for epilepsy. To address this gap, we conducted a systematic review and individual patient data analysis. Of 78 resultant articles, 5 studies with transient stimulation and chronic stimulation of the pulvinar nucleus were included. Of the 20 patients reviewed, 65% of patients had temporal lobe seizures, while 20% had temporooccipital/occipital lobe seizures. Transient stimulation studies via stereoelectroencephalography (SEEG) showed pulvinar evoked potential response rates of 80% in the mesial temporal region, 76% in the temporal neocortex, and 67% in the TP junction. Another study reported clinically less severe seizures in 62.5% of patients with pulvinar stimulation. In chronic stimulation studies, 80% of patients responded to RNS or DBS, and 2 of 4 patients experienced > 90% seizure reduction. The pulvinar nucleus of the thalamus emerges as a potential target for chronic stimulation in drug-resistant epilepsy. However, knowledge regarding pulvinar connectivity and chronic stimulation remains limited. Further research should investigate specific subregions of the pulvinar for epilepsy treatment. Understanding the role of pulvinar stimulation and its cortical connectivity will advance therapeutic interventions for epilepsy patients.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Pulvinar , Humanos , Hipocampo , Epilepsia/terapia , Tálamo , Convulsiones/terapia , Epilepsia Refractaria/terapia , Análisis de Datos
15.
Stereotact Funct Neurosurg ; 101(6): 359-368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37844550

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is one of the most common neurodegenerative progressive disorders. Despite the dominance of neurostimulation technology, stereotactic lesioning operations play a significant role in the treatment of PD. The aim of the study was to evaluate the effectiveness and safety of staged bilateral asymmetric radiofrequency (RF) stereotactic lesioning in a highly selected group of PD patients. MATERIAL AND METHODS: A retrospective review of 418 consecutive patients undergoing stereotactic ablation for advanced PD at our institution revealed 28 patients who underwent staged asymmetric bilateral ablation. In this subset, after initial RF thalamotomy, contralateral pallidotomy was performed in 16 (57.1%) patients (group Vim-GPi), and contralateral lesion of the subthalamic nucleus (STN) was performed in 12 (32.9%) patients (group Vim-STN). The mean duration of disease before the first surgery was 9.9 ± 0.8 years. The mean interval between the two operations was 3.5 ± 0.4 years (range, 1-10 years); in the Vim-GPi group, it was 3.1 ± 0.4 years; and in the Vim-STN group, it was 4.3 ± 0.1 years. After the second operation, the long-term follow-up lasted from 1 to 8 years (mean 4.8 ± 0.5 years). All patients were evaluated 1 year after the second operation. RESULTS: One year after staged bilateral lesioning, the mean tremor score improved from baseline, prior to the first operation, from 19.8 to 3.8 (improvement of 81%), the overall mean rigidity score improved from 11.0 to 3.7 (improvement of 66%), and hypokinesia improved from 14.8 to 8.9 (improvement of 40%). One year after staged bilateral lesioning, the total UPDRS score improved in the Vim-GPi group by 47% in the OFF and 45.9% in the ON states. In the Vim-STN group, the total UPDRS score improved from baseline, prior to the first operation, by 44.8% in the OFF and 51.6% in the ON states. Overall, levodopa dose was reduced by 43.4%. Neurological complications were observed in 4 (14.3%) cases; among them, 1 (3.6%) patient had permanent events related to local ischemia after pallidotomy. CONCLUSION: Staged asymmetric bilateral stereotactic RF lesioning can be a safe and effective method in highly selected patients with advanced PD, particularly where deep brain stimulation is not available or desirable. Careful identification and selection of patients for ablative surgery allow achieving optimal results in the treatment of PD with bilateral symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Resultado del Tratamiento , Levodopa/uso terapéutico , Núcleo Subtalámico/cirugía , Tálamo/cirugía
16.
Acta Neurochir (Wien) ; 165(11): 3397-3402, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37787840

RESUMEN

PURPOSE: Deep brain stimulation (DBS) relies on precise targeting of key structures such as the subthalamic nucleus (STN) for Parkinson's disease (PD) and the ventro-intermedius nucleus of the thalamus (Vim) for essential tremor (ET). Segmentation software, such as GuideXT© and Suretune©, are commercially available for atlas-based identification of deep brain structures. However, no study has compared the concordance of the segmentation results between the two software. METHODS: We retrospectively compared the concordance of segmentation of GuideXT© and Suretune© software by comparing the position of the segmented key structures with clinically predicted targets obtained using the newly developed RebrAIn© software as a reference. RESULTS: We targeted the STN in 44 MRI from PD patients (88 hemispheres) and the Vim in 31 MRI from ET patients (62 hemispheres) who were elected for DBS. In 22 STN targeting (25%), the target positioning was not correlating between GuideXT© and Suretune©. Regarding the Vim, targets were located in the segmented Vim in 37%, the posterior subthalamic area (PSA) in 60%, and the STN in 3% of the cases using GuideXT©; the proportions were 34%, 60%, and 6%, respectively, using Suretune©. The mean distance from the centre of the RebrAIn© targeting to the segmented Vim by Suretune© was closer (0.64 mm) than with GuideXT© (0.96 mm; p = 0.0004). CONCLUSION: While there is some level of concordance in the segmentation results of key structures for DBS treatment among software models, differences persist. Therefore, such software should still be considered as tools and should not replace clinician experience in DBS planning.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tálamo , Núcleo Subtalámico/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Programas Informáticos
17.
Nutrients ; 15(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686871

RESUMEN

The current study aimed to investigate whether a 12-week Body Mass Index (BMI)-based (the higher the BMI, the higher the dosage) vitamin D3 administration may affect both the kynurenine pathway (KP) and the inflammatory state in Parkinson's disease (PD) patients with deep brain stimulation (DBS) and may be useful for developing novel therapeutic targets against PD. Patients were randomly assigned to two groups: supplemented with vitamin D3 (VitD, n = 15) and treated with vegetable oil (PL, n = 21). Administration lasted for 12 weeks. The isotope dilution method by LC-MS/MS was applied to measure KP and vitamin D metabolites. Serum concentrations of cytokines such as IL-6 and TNF-α were measured using ELISA kits. After administration, the serum concentration of TNF-α decreased in PD patients with DBS. Moreover, in KP: 3-hydroksykynurenine (3-HK) was increased in the PL group, picolinic acid was decreased in the PL group, and kynurenic acid tended to be higher after administration. Furthermore, a negative correlation between 3-HK and 25(OH)D3 and 24,25(OH)2D3 was noticed. Our preliminary results provide further evidence regarding a key link between the KP substances, inflammation status, and metabolites of vitamin D in PD patients with DBS. These findings may reflect the neuroprotective abilities of vitamin D3 in PD patients with DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Colecalciferol , Quinurenina , Cromatografía Liquida , Enfermedad de Parkinson/terapia , Factor de Necrosis Tumoral alfa , Espectrometría de Masas en Tándem , Vitamina D , Vitaminas
19.
CNS Neurosci Ther ; 29(12): 4160-4171, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37408389

RESUMEN

AIMS: The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS: This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS: Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION: Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Estimulación Encefálica Profunda/métodos
20.
Neurobiol Dis ; 183: 106179, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276987

RESUMEN

BACKGROUND: Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES: To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS: Male mice were housed with females for two weeks. These resident animals become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive encounters prior to the interaction with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 encounters. RESULTS: DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS: This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.


Asunto(s)
Estimulación Encefálica Profunda , Serotonina , Femenino , Masculino , Ratones , Animales , Testosterona , Encéfalo , Hipotálamo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA